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Learning Task: Quantification

Supervision: Training set of labelled instances with
features (X) and class labels (Y)
Prediction target: Proportions of classes in unlabelled test sets
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Shift Type Assumptions Methods

No shift PS(X,Y) = PT(X,Y) CC,pcct?
Prior shift P5(Y) # PT(Y) EM 2
P°(X|Y) = P*(X|Y)
General shift P5(X,Y) # PT(X,Y) Proposed GSLS
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The Impact of Dataset Shift
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Experimental Comparison

Coverage of true class proportions by 80% prediction intervals
Dataset {w',w } ] {0,0} 10,3} {0,.7} {0,1} | {3,0} {3,.3% {3,.7} 13,1} [{7,0} {73} 47,7} {71} ] {10} {1,3} 41,75 {L,1} | Ps
HLL PCC | 82% 84% 82% 40% | 62% 71% 70% 39% | 47% 58% 58% 40% | 40% 52% 52% 40% | 71%
EM | 100% 100% 97% 67% |89% 93% 91% 64% | 74% 84% 82% 63% | 64% 77% 76% 66% | 98%
GSLS | 99% 99% 99% 86% | 94% 96% 97% 92% | 92% 93% 94% 92% | 85% 89% 88% 86% | 95%
HLA PCC | 81% 74% 63% 26% | 60% 63% 57% 26% | 40% 43% 42% 26% | 26% 31% 30% 25% | 62%
EM | 95% 93% 80% 67% |80% 83% 76% 64% |56% 64% 65% 63% |67% 69% 70% 67% | 89%
GSLS | 89% 83% 76% 50% |78% 76% 73% 52% | 66% 64% 63% 52% |49% 53% 52% 49% | 77%
DIG PCC | 96% 92% 72% 21% |45% 53% 48% 19% | 28% 33% 32% 18% |21% 26% 25% 20% | 49%
EM | 100% 96% 76% 43% |78% 85% 66% 36% |52% 63% 55% 35% | 41% 49% 49% 40% | 95%
GSLS | 99% 97% 95% 75% | 94% 96% 97% 87% |89% 90% 92% 89% |77% 77% 78% 76% |87%
ISX PCC | 80% 41% 25% 12% |24% 27% 19% 10% | 14% 17% 16% 10% | 10% 14% 11% 10% | 20%
EM | 99% 79% 63% 42% | 61% 63% 52% 33% |51% 53% 50% 32% | 41% 44% 48% 44% | 97%
GSLS 97%  92% 82% 74% | 91% 94% 91% 85% | 87% 87% 88% 87% | 76% 75% 75% 76% | 84%
ISP PCC | 74% 19% 8% 4% | 16% 16% 9% 4% | 8% 9% 8% 4% | 5% 6% 6% 5% | 7%
EM | 90% 20% 11% 8% | 14% 18% 10% 6% | 6% 9% 9% 5% | 8% 8% 8% 9% | 74%
GSLS | 96% 64% 51% 52% | 64% 61% 55% 54% | 57% 52% 57% 58% | 51% 47% 48% 52% | 40%

Colouring configurations where at least 80% of intervals covered the true class proportion
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Conclusions and Future Work

e GSLS gives more reliable prediction intervals under
more general conditions of shift.

e GSLS communicates the degree of shift, enabling
users to take proportionate corrective action.

e |nfuture work, we plan to:

= Analyse specific shift conditions where GSLS fitting is suboptimal
= Develop aframework for selecting the optimal quantification
method for observed shift



Thanks for Watching

Source code: github.com/ben-denham/gsls


https://github.com/ben-denham/gsls

