
Interpretation of ROAD’s output

The RoadTest.java creates experiment output for three scenarios using input graph
Metropolis. The output of the main method is generated by three scenarios performed by
methods

1. deliverAllPathsCaseStudy
2. emergencyAllPathsCaseStudy
3. deliverShortestPathParametric

Directories for each scenario are created in the Eclipse project’s directory. The directories
are named in static String declarations at the top of the RoadTest class. The location of
Prism’s binary is also declared as a static string.

The directories contain

• DTMC model files expressed in Prism’s high-level modelling language
• PCTL property files
• A script file to automate verification of model and properties in Prism

The main method in the class RoadTest.java creates a city graph

State city = Metropolis.cityModel();

of the Metropolis case study, shown in Figure 1. The graph comprises 6 vertices and 18
edges. Each vertex represents a location on the map and edges represent two-way streets.

The Roads framework is initialised: Roads roads = new Roads(city);
This code initialises the key components (Planner, Model Synthesiser and Probabilistic
Model Checker) for use with on Metropolis graph input

Figure 1Metropolis Topological Map labelled with distance and probabilities

Scenario 1: deliverAllPathsCaseStudy

In this scenario, a Deliver task transports 10 resources from Metropolis’ supply vertex a to
the destination vertex f. Upon arrival, an auditing task is performed.

We use Roads to model check each possible path between a and f against the PCTL
properties:

P P=?[F(tasksuccess=1)]
R R=?[C]

to verify the probability a Deliver task is successful and the cost of attempting the task
relative to the rewards structure associating distance to transitions in the path.

All paths between a -> f are computed by the Planner, stored in an ArrayList of Path objects:

[[(a : b), (b : c), (c : f)],
 [(a : b), (b : c), (c : d), (d : f)],
 [(a : b), (b : c), (c : e), (e : f)],
 [(a : c), (c : f)],
 [(a : c), (c : d), (d : f)],
 [(a : c), (c : e), (e : f)],
 [(a : d), (d : f)],
 [(a : d), (d : c), (c : f)],
 [(a : d), (d : c), (c : e), (e : f)]]

For each path a model and success and cost properties are synthesised and verified

RoadModel model = synth.synthesise(deliver, path);
RoadResult pmcResult = prob.verify(model, succ,cost);

The console output is below. Each line comprises: path, probabilistic model checking result
for P and R, number of states, and number of transitions in the model.
The total amount of time required to complete model checking is 554ms.

Deliver (All Paths) Scenario
a -> b -> c -> f 0.70162 8.6714 20 28
a -> b -> c -> d -> f 0.74106 10.279 21 30
a -> b -> c -> e -> f 0.74870 12.682 21 30
a -> c -> f 0.81310 11.672 19 26
a -> c -> d -> f 0.85882 13.535 20 28
a -> c -> e -> f 0.86767 16.320 20 28
a -> d -> f 0.88538 11.821 19 26
a -> d -> c -> f 0.80506 21.387 20 28
a -> d -> c -> e -> f 0.85909 25.989 21 30
554ms

In the directory projectpath+deliverScenarioPath ROADS generates nine Prism model files
corresponding to each path and a file storing properties P and R. A script file is generated to
automatically verify each model against P and R.

Scenario 2: emergencyAllPathsScenario

In this scenario, an Emergency task travels from vertex e to attend an alarm notification at
vertex d.

To verify the probability an Emergency task is successful and the cost of attempting the task
relative to the rewards structure associating distance to transitions in the path.

We use Roads to model check each possible path between e and d against the PCTL
properties P and R.

All paths between e -> d are computed by the Planner, stored in an ArrayList of Path
objects:
[[(e : c), (c : d)],
 [(e : c), (c : f), (f : d)],
 [(e : c), (c : b), (b : a), (a : d)],
 [(e : c), (c : a), (a : d)],
 [(e : f), (f : d)],
 [(e : f), (f : c), (c : d)],
 [(e : f), (f : c), (c : b), (b : a), (a : d)],
 [(e : f), (f : c), (c : a), (a : d)]]
 [(e : c), (c : d)]
 [(e : c), (c : f), (f : d)]
 [(e : c), (c : b), (b : a), (a : d)]
 [(e : c), (c : a), (a : d)]]

For each path a model and success and cost properties are synthesised and verified

RoadModel model = synth.synthesise(emergency, path);
RoadResult pmcResult = prob.verify(model, succ,cost);

The console output is below. Each line comprises: path, probabilistic model checking result
for P and R, number of states, and number of transitions in the model.
The total amount of time required to complete model checking is 285ms.

Emergency All Paths Scenario
e -> c -> d 0.93178 9.7812 12 16
e -> c -> f -> d 0.83004 13.371 13 18
e -> c -> b -> a -> d 0.77990 14.043 14 20
e -> c -> a -> d 0.90383 17.281 13 18
e -> f -> d 0.92227 10.831 12 16
e -> f -> c -> d 0.83860 19.950 13 18
e -> f -> c -> b -> a -> d 0.70191 23.786 15 22
e -> f -> c -> a -> d 0.81344 26.700 14 20

285ms

In the directory projectpath+emergencyScenario ROADS generates eight Prism model files
corresponding to each path and a file storing properties P and R. A script file is generated to
automatically verify each model against P and R.

Scenario 3: deliverShortestPathParametricScenario

In this scenario, a deliver task must transport 10 resource units from the supply at vertex a
to the destination at vertex f. In addition, the parameter list [pSoftware,pTraining, pRetry] is
input to ROADS.

We use Roads to model check the shortest path between a and f against the PCTL
properties:

P P=?[F(tasksuccess=1)]
R R=?[C]

to verify the probability a Deliver task is successful and the cost of attempting the task
relative to the rewards structure associating distance to transitions in the path.

The shortest path computed by the Planner is: [(a : b), (b : c), (c : f)]

Roads synthesises a parametric model with parameters: pSoftware,pTraining, pRetry and
verified using a parametric model checker (Prism)

RoadModel model = synth.synthesise(deliveraudit, route);
RoadResult pmcResult = prob.verify(model, succ,cost);

For this scenario, no console output is produced. The script for the task performs parametric
model checking with the prism command:

prism parametricDeliver0.pm properties.pctl -param pSoftware=0.0:1.0, pTraining=0.0:1.0,
pRetry=0.0:1.0 >> scenariooutput.txt

which invokes the Prism command line on the synthesised parametric DTMC in the Prism
file parametricDeliver0.pm. Parametric model checking yields the expression for property P

Time for model construction: 0.077 seconds.
Time for model checking: 0.065 seconds.
Result (probability): ([0.0,1.0],[0.0,1.0],[0.0,1.0]): { 73830933 pTraining * pSoftware | 100000000
pRetry * pSoftware - 100000000 pRetry + 100000000 }

which can be used to compare the success of the deliver on the shortest path across
different values for parameters for audit training, software reliability and likelihood of retry.

	Interpretation of ROAD’s output
	Scenario 1: deliverAllPathsCaseStudy
	Scenario 2: emergencyAllPathsScenario
	Scenario 3: deliverShortestPathParametricScenario

